Metamath Proof Explorer
		
		
		
		Description:  A function on a finite set is finitely supported.  (Contributed by Mario
       Carneiro, 20-Jun-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fisuppfi.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
					
						|  |  | fisuppfi.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
				
					|  | Assertion | fisuppfi | ⊢  ( 𝜑  →  ( ◡ 𝐹  “  𝐶 )  ∈  Fin ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fisuppfi.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fisuppfi.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝐶 )  ⊆  dom  𝐹 | 
						
							| 4 | 3 2 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝐶 )  ⊆  𝐴 ) | 
						
							| 5 | 1 4 | ssfid | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝐶 )  ∈  Fin ) |