Metamath Proof Explorer


Theorem fitop

Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009)

Ref Expression
Assertion fitop ( 𝐽 ∈ Top → ( fi ‘ 𝐽 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 inopn ( ( 𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝐽 ) → ( 𝑥𝑦 ) ∈ 𝐽 )
2 1 3expib ( 𝐽 ∈ Top → ( ( 𝑥𝐽𝑦𝐽 ) → ( 𝑥𝑦 ) ∈ 𝐽 ) )
3 2 ralrimivv ( 𝐽 ∈ Top → ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 )
4 inficl ( 𝐽 ∈ Top → ( ∀ 𝑥𝐽𝑦𝐽 ( 𝑥𝑦 ) ∈ 𝐽 ↔ ( fi ‘ 𝐽 ) = 𝐽 ) )
5 3 4 mpbid ( 𝐽 ∈ Top → ( fi ‘ 𝐽 ) = 𝐽 )