Metamath Proof Explorer


Theorem fiufl

Description: A finite set satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fiufl ( 𝑋 ∈ Fin → 𝑋 ∈ UFL )

Proof

Step Hyp Ref Expression
1 pwfi ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin )
2 pwfi ( 𝒫 𝑋 ∈ Fin ↔ 𝒫 𝒫 𝑋 ∈ Fin )
3 finnum ( 𝒫 𝒫 𝑋 ∈ Fin → 𝒫 𝒫 𝑋 ∈ dom card )
4 numufl ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL )
5 3 4 syl ( 𝒫 𝒫 𝑋 ∈ Fin → 𝑋 ∈ UFL )
6 2 5 sylbi ( 𝒫 𝑋 ∈ Fin → 𝑋 ∈ UFL )
7 1 6 sylbi ( 𝑋 ∈ Fin → 𝑋 ∈ UFL )