Metamath Proof Explorer


Theorem fiunicl

Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fiunicl.1 ( ( 𝜑𝑥𝐴𝑦𝐴 ) → ( 𝑥𝑦 ) ∈ 𝐴 )
fiunicl.2 ( 𝜑𝐴 ∈ Fin )
fiunicl.3 ( 𝜑𝐴 ≠ ∅ )
Assertion fiunicl ( 𝜑 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 fiunicl.1 ( ( 𝜑𝑥𝐴𝑦𝐴 ) → ( 𝑥𝑦 ) ∈ 𝐴 )
2 fiunicl.2 ( 𝜑𝐴 ∈ Fin )
3 fiunicl.3 ( 𝜑𝐴 ≠ ∅ )
4 uniiun 𝐴 = 𝑧𝐴 𝑧
5 nfv 𝑧 𝜑
6 simpr ( ( 𝜑𝑧𝐴 ) → 𝑧𝐴 )
7 5 6 1 2 3 fiiuncl ( 𝜑 𝑧𝐴 𝑧𝐴 )
8 4 7 eqeltrid ( 𝜑 𝐴𝐴 )