Metamath Proof Explorer
Description: If a set is closed under the union of two sets, then it is closed under
finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
fiunicl.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
|
|
fiunicl.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fiunicl.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
|
Assertion |
fiunicl |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fiunicl.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
2 |
|
fiunicl.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fiunicl.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 |
|
uniiun |
⊢ ∪ 𝐴 = ∪ 𝑧 ∈ 𝐴 𝑧 |
5 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
7 |
5 6 1 2 3
|
fiiuncl |
⊢ ( 𝜑 → ∪ 𝑧 ∈ 𝐴 𝑧 ∈ 𝐴 ) |
8 |
4 7
|
eqeltrid |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝐴 ) |