Metamath Proof Explorer


Theorem fival

Description: The set of all the finite intersections of the elements of A . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fival ( 𝐴𝑉 → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } )

Proof

Step Hyp Ref Expression
1 df-fi fi = ( 𝑧 ∈ V ↦ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = 𝑥 } )
2 pweq ( 𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴 )
3 2 ineq1d ( 𝑧 = 𝐴 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) )
4 3 rexeqdv ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 ) )
5 4 abbidv ( 𝑧 = 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = 𝑥 } = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } )
6 elex ( 𝐴𝑉𝐴 ∈ V )
7 simpr ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 )
8 elinel1 ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 )
9 8 elpwid ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥𝐴 )
10 eqvisset ( 𝑦 = 𝑥 𝑥 ∈ V )
11 intex ( 𝑥 ≠ ∅ ↔ 𝑥 ∈ V )
12 10 11 sylibr ( 𝑦 = 𝑥𝑥 ≠ ∅ )
13 intssuni2 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → 𝑥 𝐴 )
14 9 12 13 syl2an ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = 𝑥 ) → 𝑥 𝐴 )
15 7 14 eqsstrd ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = 𝑥 ) → 𝑦 𝐴 )
16 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦 𝐴 )
17 15 16 sylibr ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = 𝑥 ) → 𝑦 ∈ 𝒫 𝐴 )
18 17 rexlimiva ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴 )
19 18 abssi { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } ⊆ 𝒫 𝐴
20 uniexg ( 𝐴𝑉 𝐴 ∈ V )
21 20 pwexd ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
22 ssexg ( ( { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } ∈ V )
23 19 21 22 sylancr ( 𝐴𝑉 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } ∈ V )
24 1 5 6 23 fvmptd3 ( 𝐴𝑉 → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = 𝑥 } )