Step |
Hyp |
Ref |
Expression |
1 |
|
uffix |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |
2 |
1
|
simprd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
3 |
1
|
simpld |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
4 |
|
fgcl |
⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
6 |
2 5
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
7 |
|
undif2 |
⊢ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) = ( 𝑦 ∪ 𝑋 ) |
8 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
9 |
|
ssequn1 |
⊢ ( 𝑦 ⊆ 𝑋 ↔ ( 𝑦 ∪ 𝑋 ) = 𝑋 ) |
10 |
8 9
|
sylib |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝑦 ∪ 𝑋 ) = 𝑋 ) |
11 |
7 10
|
eqtr2id |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑋 = ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) ) |
13 |
12
|
biimpac |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋 ) → 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) |
14 |
|
elun |
⊢ ( 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
16 |
15
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
17 |
|
ibar |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) |
19 |
|
difss |
⊢ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 |
20 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 ) ) |
21 |
19 20
|
mpbiri |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
23 |
22
|
biantrurd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ↔ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
24 |
18 23
|
orbi12d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) ) |
25 |
16 24
|
mpbid |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
27 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
28 |
27
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) |
29 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑋 ∖ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
30 |
29
|
elrab |
⊢ ( ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
31 |
28 30
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
32 |
31
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
33 |
26 32
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |
34 |
|
isufil |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( UFil ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) ) |
35 |
6 33 34
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( UFil ‘ 𝑋 ) ) |