Metamath Proof Explorer


Theorem fixufil

Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009) (Revised by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 29-Jul-2015)

Ref Expression
Assertion fixufil ( ( 𝑋𝑉𝐴𝑋 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( UFil ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 uffix ( ( 𝑋𝑉𝐴𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) )
2 1 simprd ( ( 𝑋𝑉𝐴𝑋 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) )
3 1 simpld ( ( 𝑋𝑉𝐴𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) )
4 fgcl ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) )
5 3 4 syl ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) )
6 2 5 eqeltrd ( ( 𝑋𝑉𝐴𝑋 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( Fil ‘ 𝑋 ) )
7 undif2 ( 𝑦 ∪ ( 𝑋𝑦 ) ) = ( 𝑦𝑋 )
8 elpwi ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
9 ssequn1 ( 𝑦𝑋 ↔ ( 𝑦𝑋 ) = 𝑋 )
10 8 9 sylib ( 𝑦 ∈ 𝒫 𝑋 → ( 𝑦𝑋 ) = 𝑋 )
11 7 10 eqtr2id ( 𝑦 ∈ 𝒫 𝑋𝑋 = ( 𝑦 ∪ ( 𝑋𝑦 ) ) )
12 11 eleq2d ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴𝑋𝐴 ∈ ( 𝑦 ∪ ( 𝑋𝑦 ) ) ) )
13 12 biimpac ( ( 𝐴𝑋𝑦 ∈ 𝒫 𝑋 ) → 𝐴 ∈ ( 𝑦 ∪ ( 𝑋𝑦 ) ) )
14 elun ( 𝐴 ∈ ( 𝑦 ∪ ( 𝑋𝑦 ) ) ↔ ( 𝐴𝑦𝐴 ∈ ( 𝑋𝑦 ) ) )
15 13 14 sylib ( ( 𝐴𝑋𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴𝑦𝐴 ∈ ( 𝑋𝑦 ) ) )
16 15 adantll ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴𝑦𝐴 ∈ ( 𝑋𝑦 ) ) )
17 ibar ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ) )
18 17 adantl ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ) )
19 difss ( 𝑋𝑦 ) ⊆ 𝑋
20 elpw2g ( 𝑋𝑉 → ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋𝑦 ) ⊆ 𝑋 ) )
21 19 20 mpbiri ( 𝑋𝑉 → ( 𝑋𝑦 ) ∈ 𝒫 𝑋 )
22 21 ad2antrr ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝑋𝑦 ) ∈ 𝒫 𝑋 )
23 22 biantrurd ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ ( 𝑋𝑦 ) ↔ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) )
24 18 23 orbi12d ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝐴𝑦𝐴 ∈ ( 𝑋𝑦 ) ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ∨ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) ) )
25 16 24 mpbid ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ∨ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) )
26 25 ralrimiva ( ( 𝑋𝑉𝐴𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ∨ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) )
27 eleq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
28 27 elrab ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) )
29 eleq2 ( 𝑥 = ( 𝑋𝑦 ) → ( 𝐴𝑥𝐴 ∈ ( 𝑋𝑦 ) ) )
30 29 elrab ( ( 𝑋𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) )
31 28 30 orbi12i ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∨ ( 𝑋𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ∨ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) )
32 31 ralbii ( ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∨ ( 𝑋𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ∨ ( ( 𝑋𝑦 ) ∈ 𝒫 𝑋𝐴 ∈ ( 𝑋𝑦 ) ) ) )
33 26 32 sylibr ( ( 𝑋𝑉𝐴𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∨ ( 𝑋𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) )
34 isufil ( { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( UFil ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∨ ( 𝑋𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) ) )
35 6 33 34 sylanbrc ( ( 𝑋𝑉𝐴𝑋 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( UFil ‘ 𝑋 ) )