Metamath Proof Explorer


Theorem flcl

Description: The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 flval ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( 𝑥 ∈ ℤ ( 𝑥𝐴𝐴 < ( 𝑥 + 1 ) ) ) )
2 rebtwnz ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥𝐴𝐴 < ( 𝑥 + 1 ) ) )
3 riotacl ( ∃! 𝑥 ∈ ℤ ( 𝑥𝐴𝐴 < ( 𝑥 + 1 ) ) → ( 𝑥 ∈ ℤ ( 𝑥𝐴𝐴 < ( 𝑥 + 1 ) ) ) ∈ ℤ )
4 2 3 syl ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℤ ( 𝑥𝐴𝐴 < ( 𝑥 + 1 ) ) ) ∈ ℤ )
5 1 4 eqeltrd ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )