Metamath Proof Explorer


Theorem flcld

Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis flcld.1 ( 𝜑𝐴 ∈ ℝ )
Assertion flcld ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 flcld.1 ( 𝜑𝐴 ∈ ℝ )
2 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
3 1 2 syl ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ℤ )