| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							drhmsubc.c | 
							⊢ 𝐶  =  ( 𝑈  ∩  DivRing )  | 
						
						
							| 2 | 
							
								
							 | 
							drhmsubc.j | 
							⊢ 𝐽  =  ( 𝑟  ∈  𝐶 ,  𝑠  ∈  𝐶  ↦  ( 𝑟  RingHom  𝑠 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fldhmsubc.d | 
							⊢ 𝐷  =  ( 𝑈  ∩  Field )  | 
						
						
							| 4 | 
							
								
							 | 
							fldhmsubc.f | 
							⊢ 𝐹  =  ( 𝑟  ∈  𝐷 ,  𝑠  ∈  𝐷  ↦  ( 𝑟  RingHom  𝑠 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝑈  ∈  𝑉  →  ( RingCat ‘ 𝑈 )  ∈  V )  | 
						
						
							| 6 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑟  RingHom  𝑠 )  ∈  V  | 
						
						
							| 7 | 
							
								2 6
							 | 
							fnmpoi | 
							⊢ 𝐽  Fn  ( 𝐶  ×  𝐶 )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐽  Fn  ( 𝐶  ×  𝐶 ) )  | 
						
						
							| 9 | 
							
								4 6
							 | 
							fnmpoi | 
							⊢ 𝐹  Fn  ( 𝐷  ×  𝐷 )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐹  Fn  ( 𝐷  ×  𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							inex1g | 
							⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  DivRing )  ∈  V )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							eqeltrid | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  V )  | 
						
						
							| 13 | 
							
								
							 | 
							df-field | 
							⊢ Field  =  ( DivRing  ∩  CRing )  | 
						
						
							| 14 | 
							
								
							 | 
							inss1 | 
							⊢ ( DivRing  ∩  CRing )  ⊆  DivRing  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqsstri | 
							⊢ Field  ⊆  DivRing  | 
						
						
							| 16 | 
							
								
							 | 
							sslin | 
							⊢ ( Field  ⊆  DivRing  →  ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							mp1i | 
							⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) )  | 
						
						
							| 18 | 
							
								17 3 1
							 | 
							3sstr4g | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐷  ⊆  𝐶 )  | 
						
						
							| 19 | 
							
								5 8 10 12 18
							 | 
							rescabs | 
							⊢ ( 𝑈  ∈  𝑉  →  ( ( ( RingCat ‘ 𝑈 )  ↾cat  𝐽 )  ↾cat  𝐹 )  =  ( ( RingCat ‘ 𝑈 )  ↾cat  𝐹 ) )  | 
						
						
							| 20 | 
							
								1 2 3 4
							 | 
							fldcat | 
							⊢ ( 𝑈  ∈  𝑉  →  ( ( RingCat ‘ 𝑈 )  ↾cat  𝐹 )  ∈  Cat )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqeltrd | 
							⊢ ( 𝑈  ∈  𝑉  →  ( ( ( RingCat ‘ 𝑈 )  ↾cat  𝐽 )  ↾cat  𝐹 )  ∈  Cat )  |