Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | ||
| fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | fldcat | ⊢ ( 𝑈 ∈ 𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| 2 | drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 3 | fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | |
| 4 | fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 5 | isfld | ⊢ ( 𝑟 ∈ Field ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) ) | |
| 6 | crngring | ⊢ ( 𝑟 ∈ CRing → 𝑟 ∈ Ring ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) → 𝑟 ∈ Ring ) |
| 8 | 5 7 | sylbi | ⊢ ( 𝑟 ∈ Field → 𝑟 ∈ Ring ) |
| 9 | 8 | rgen | ⊢ ∀ 𝑟 ∈ Field 𝑟 ∈ Ring |
| 10 | 9 3 4 | sringcat | ⊢ ( 𝑈 ∈ 𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat ) |