Metamath Proof Explorer
		
		
		
		Description:  A field is a division ring.  (Contributed by Jeff Madsen, 10-Jun-2010)
     (Revised by Mario Carneiro, 15-Dec-2013)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					flddivrng | 
					⊢  ( 𝐾  ∈  Fld  →  𝐾  ∈  DivRingOps )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-fld | 
							⊢ Fld  =  ( DivRingOps  ∩  Com2 )  | 
						
						
							| 2 | 
							
								
							 | 
							inss1 | 
							⊢ ( DivRingOps  ∩  Com2 )  ⊆  DivRingOps  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqsstri | 
							⊢ Fld  ⊆  DivRingOps  | 
						
						
							| 4 | 
							
								3
							 | 
							sseli | 
							⊢ ( 𝐾  ∈  Fld  →  𝐾  ∈  DivRingOps )  |