Description: A field is a division ring. (Contributed by SN, 17-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flddrngd.1 | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| Assertion | flddrngd | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flddrngd.1 | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| 2 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 3 | 2 | simplbi | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) | 
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |