Metamath Proof Explorer


Theorem fldgensdrg

Description: A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenval.3 ( 𝜑𝑆𝐵 )
Assertion fldgensdrg ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ∈ ( SubDRing ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenval.3 ( 𝜑𝑆𝐵 )
4 1 2 3 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
5 2 drngringd ( 𝜑𝐹 ∈ Ring )
6 eqid ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) = ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
7 sseq2 ( 𝑎 = 𝑥 → ( 𝑆𝑎𝑆𝑥 ) )
8 7 elrab ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ↔ ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆𝑥 ) )
9 8 biimpi ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } → ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆𝑥 ) )
10 9 adantl ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) → ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆𝑥 ) )
11 10 simpld ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) → 𝑥 ∈ ( SubDRing ‘ 𝐹 ) )
12 issdrg ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑥 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹s 𝑥 ) ∈ DivRing ) )
13 12 simp2bi ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) → 𝑥 ∈ ( SubRing ‘ 𝐹 ) )
14 11 13 syl ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) → 𝑥 ∈ ( SubRing ‘ 𝐹 ) )
15 14 ex ( 𝜑 → ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } → 𝑥 ∈ ( SubRing ‘ 𝐹 ) ) )
16 15 ssrdv ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ ( SubRing ‘ 𝐹 ) )
17 sseq2 ( 𝑎 = 𝐵 → ( 𝑆𝑎𝑆𝐵 ) )
18 1 sdrgid ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
19 2 18 syl ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
20 17 19 3 elrabd ( 𝜑𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
21 20 ne0d ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ≠ ∅ )
22 12 simp3bi ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) → ( 𝐹s 𝑥 ) ∈ DivRing )
23 11 22 syl ( ( 𝜑𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) → ( 𝐹s 𝑥 ) ∈ DivRing )
24 6 2 16 21 23 subdrgint ( 𝜑 → ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ∈ DivRing )
25 24 drngringd ( 𝜑 → ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ∈ Ring )
26 intss1 ( 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 )
27 20 26 syl ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 )
28 issdrg ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑎 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹s 𝑎 ) ∈ DivRing ) )
29 28 simp2bi ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) → 𝑎 ∈ ( SubRing ‘ 𝐹 ) )
30 eqid ( 1r𝐹 ) = ( 1r𝐹 )
31 30 subrg1cl ( 𝑎 ∈ ( SubRing ‘ 𝐹 ) → ( 1r𝐹 ) ∈ 𝑎 )
32 29 31 syl ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) → ( 1r𝐹 ) ∈ 𝑎 )
33 32 ad2antlr ( ( ( 𝜑𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) ∧ 𝑆𝑎 ) → ( 1r𝐹 ) ∈ 𝑎 )
34 33 ex ( ( 𝜑𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝑆𝑎 → ( 1r𝐹 ) ∈ 𝑎 ) )
35 34 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ( 𝑆𝑎 → ( 1r𝐹 ) ∈ 𝑎 ) )
36 fvex ( 1r𝐹 ) ∈ V
37 36 elintrab ( ( 1r𝐹 ) ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ↔ ∀ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ( 𝑆𝑎 → ( 1r𝐹 ) ∈ 𝑎 ) )
38 35 37 sylibr ( 𝜑 → ( 1r𝐹 ) ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
39 1 30 issubrg ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubRing ‘ 𝐹 ) ↔ ( ( 𝐹 ∈ Ring ∧ ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ∈ Ring ) ∧ ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 ∧ ( 1r𝐹 ) ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ) )
40 39 biimpri ( ( ( 𝐹 ∈ Ring ∧ ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ∈ Ring ) ∧ ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 ∧ ( 1r𝐹 ) ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ) → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubRing ‘ 𝐹 ) )
41 5 25 27 38 40 syl22anc ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubRing ‘ 𝐹 ) )
42 issdrg ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹s { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ) ∈ DivRing ) )
43 2 41 24 42 syl3anbrc ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ ( SubDRing ‘ 𝐹 ) )
44 4 43 eqeltrd ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ∈ ( SubDRing ‘ 𝐹 ) )