Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
3 |
|
fldgenval.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
4 |
1 2 3
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
5 |
2
|
drngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
6 |
|
eqid |
⊢ ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) = ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
7 |
|
sseq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑥 ) ) |
8 |
7
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ↔ ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆 ⊆ 𝑥 ) ) |
9 |
8
|
biimpi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } → ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆 ⊆ 𝑥 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) → ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝑆 ⊆ 𝑥 ) ) |
11 |
10
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) → 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ) |
12 |
|
issdrg |
⊢ ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑥 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑥 ) ∈ DivRing ) ) |
13 |
12
|
simp2bi |
⊢ ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) → 𝑥 ∈ ( SubRing ‘ 𝐹 ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) → 𝑥 ∈ ( SubRing ‘ 𝐹 ) ) |
15 |
14
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } → 𝑥 ∈ ( SubRing ‘ 𝐹 ) ) ) |
16 |
15
|
ssrdv |
⊢ ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ ( SubRing ‘ 𝐹 ) ) |
17 |
|
sseq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵 ) ) |
18 |
1
|
sdrgid |
⊢ ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
20 |
17 19 3
|
elrabd |
⊢ ( 𝜑 → 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
21 |
20
|
ne0d |
⊢ ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ≠ ∅ ) |
22 |
12
|
simp3bi |
⊢ ( 𝑥 ∈ ( SubDRing ‘ 𝐹 ) → ( 𝐹 ↾s 𝑥 ) ∈ DivRing ) |
23 |
11 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) → ( 𝐹 ↾s 𝑥 ) ∈ DivRing ) |
24 |
6 2 16 21 23
|
subdrgint |
⊢ ( 𝜑 → ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ∈ DivRing ) |
25 |
24
|
drngringd |
⊢ ( 𝜑 → ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ∈ Ring ) |
26 |
|
intss1 |
⊢ ( 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ) |
27 |
20 26
|
syl |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ) |
28 |
|
issdrg |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑎 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑎 ) ∈ DivRing ) ) |
29 |
28
|
simp2bi |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) → 𝑎 ∈ ( SubRing ‘ 𝐹 ) ) |
30 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
31 |
30
|
subrg1cl |
⊢ ( 𝑎 ∈ ( SubRing ‘ 𝐹 ) → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) |
32 |
29 31
|
syl |
⊢ ( 𝑎 ∈ ( SubDRing ‘ 𝐹 ) → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) ∧ 𝑆 ⊆ 𝑎 ) → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝑆 ⊆ 𝑎 → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) ) |
35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ( 𝑆 ⊆ 𝑎 → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) ) |
36 |
|
fvex |
⊢ ( 1r ‘ 𝐹 ) ∈ V |
37 |
36
|
elintrab |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ↔ ∀ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ( 𝑆 ⊆ 𝑎 → ( 1r ‘ 𝐹 ) ∈ 𝑎 ) ) |
38 |
35 37
|
sylibr |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
39 |
1 30
|
issubrg |
⊢ ( ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubRing ‘ 𝐹 ) ↔ ( ( 𝐹 ∈ Ring ∧ ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ∈ Ring ) ∧ ( ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ∧ ( 1r ‘ 𝐹 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ) ) |
40 |
39
|
biimpri |
⊢ ( ( ( 𝐹 ∈ Ring ∧ ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ∈ Ring ) ∧ ( ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ∧ ( 1r ‘ 𝐹 ) ∈ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ) → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubRing ‘ 𝐹 ) ) |
41 |
5 25 27 38 40
|
syl22anc |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubRing ‘ 𝐹 ) ) |
42 |
|
issdrg |
⊢ ( ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) ∈ DivRing ) ) |
43 |
2 41 24 42
|
syl3anbrc |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ ( SubDRing ‘ 𝐹 ) ) |
44 |
4 43
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ∈ ( SubDRing ‘ 𝐹 ) ) |