Metamath Proof Explorer


Theorem fldgenss

Description: Generated subfields preserve subset ordering. ( see lspss and spanss ) (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenval.3 ( 𝜑𝑆𝐵 )
fldgenss.t ( 𝜑𝑇𝑆 )
Assertion fldgenss ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ ( 𝐹 fldGen 𝑆 ) )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenval.3 ( 𝜑𝑆𝐵 )
4 fldgenss.t ( 𝜑𝑇𝑆 )
5 4 adantr ( ( 𝜑𝑆𝑎 ) → 𝑇𝑆 )
6 simpr ( ( 𝜑𝑆𝑎 ) → 𝑆𝑎 )
7 5 6 sstrd ( ( 𝜑𝑆𝑎 ) → 𝑇𝑎 )
8 7 ex ( 𝜑 → ( 𝑆𝑎𝑇𝑎 ) )
9 8 adantr ( ( 𝜑𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝑆𝑎𝑇𝑎 ) )
10 9 ss2rabdv ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } )
11 intss ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
12 10 11 syl ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
13 4 3 sstrd ( 𝜑𝑇𝐵 )
14 1 2 13 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑇 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } )
15 1 2 3 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
16 12 14 15 3sstr4d ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ ( 𝐹 fldGen 𝑆 ) )