Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
3 |
|
fldgenval.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
4 |
|
fldgenss.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑎 ) → 𝑇 ⊆ 𝑆 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑎 ) → 𝑆 ⊆ 𝑎 ) |
7 |
5 6
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝑎 ) → 𝑇 ⊆ 𝑎 ) |
8 |
7
|
ex |
⊢ ( 𝜑 → ( 𝑆 ⊆ 𝑎 → 𝑇 ⊆ 𝑎 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝑆 ⊆ 𝑎 → 𝑇 ⊆ 𝑎 ) ) |
10 |
9
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
11 |
|
intss |
⊢ ( { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
13 |
4 3
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐵 ) |
14 |
1 2 13
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
15 |
1 2 3
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
16 |
12 14 15
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ ( 𝐹 fldGen 𝑆 ) ) |