Metamath Proof Explorer


Theorem fldgenssid

Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenval.3 ( 𝜑𝑆𝐵 )
Assertion fldgenssid ( 𝜑𝑆 ⊆ ( 𝐹 fldGen 𝑆 ) )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenval.3 ( 𝜑𝑆𝐵 )
4 ssintub 𝑆 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 }
5 1 2 3 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
6 4 5 sseqtrrid ( 𝜑𝑆 ⊆ ( 𝐹 fldGen 𝑆 ) )