Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fldgenval.1 | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
fldgenval.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | ||
fldgenval.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
Assertion | fldgenssid | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝐹 fldGen 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldgenval.1 | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
2 | fldgenval.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | |
3 | fldgenval.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
4 | ssintub | ⊢ 𝑆 ⊆ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } | |
5 | 1 2 3 | fldgenval | ⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
6 | 4 5 | sseqtrrid | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝐹 fldGen 𝑆 ) ) |