Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
3 |
|
fldgenidfld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubDRing ‘ 𝐹 ) ) |
4 |
|
fldgenssp.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
5 |
|
issdrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑆 ) ∈ DivRing ) ) |
6 |
3 5
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑆 ) ∈ DivRing ) ) |
7 |
6
|
simp2d |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝐹 ) ) |
8 |
1
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝐹 ) → 𝑆 ⊆ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
10 |
4 9
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐵 ) |
11 |
1 2 10
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
12 |
|
sseq2 |
⊢ ( 𝑎 = 𝑆 → ( 𝑇 ⊆ 𝑎 ↔ 𝑇 ⊆ 𝑆 ) ) |
13 |
12 3 4
|
elrabd |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
14 |
|
intss1 |
⊢ ( 𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ 𝑆 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ 𝑆 ) |
16 |
11 15
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ 𝑆 ) |