Metamath Proof Explorer


Theorem fldgenssp

Description: The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenidfld.s ( 𝜑𝑆 ∈ ( SubDRing ‘ 𝐹 ) )
fldgenssp.t ( 𝜑𝑇𝑆 )
Assertion fldgenssp ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenidfld.s ( 𝜑𝑆 ∈ ( SubDRing ‘ 𝐹 ) )
4 fldgenssp.t ( 𝜑𝑇𝑆 )
5 issdrg ( 𝑆 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹s 𝑆 ) ∈ DivRing ) )
6 3 5 sylib ( 𝜑 → ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹s 𝑆 ) ∈ DivRing ) )
7 6 simp2d ( 𝜑𝑆 ∈ ( SubRing ‘ 𝐹 ) )
8 1 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝐹 ) → 𝑆𝐵 )
9 7 8 syl ( 𝜑𝑆𝐵 )
10 4 9 sstrd ( 𝜑𝑇𝐵 )
11 1 2 10 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑇 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } )
12 sseq2 ( 𝑎 = 𝑆 → ( 𝑇𝑎𝑇𝑆 ) )
13 12 3 4 elrabd ( 𝜑𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } )
14 intss1 ( 𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } ⊆ 𝑆 )
15 13 14 syl ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇𝑎 } ⊆ 𝑆 )
16 11 15 eqsstrd ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ 𝑆 )