Metamath Proof Explorer


Theorem fldgenssv

Description: A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenval.3 ( 𝜑𝑆𝐵 )
Assertion fldgenssv ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenval.3 ( 𝜑𝑆𝐵 )
4 1 2 3 fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
5 sseq2 ( 𝑎 = 𝐵 → ( 𝑆𝑎𝑆𝐵 ) )
6 1 sdrgid ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
7 2 6 syl ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
8 5 7 3 elrabd ( 𝜑𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
9 intss1 ( 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } → { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 )
10 8 9 syl ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ⊆ 𝐵 )
11 4 10 eqsstrd ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ⊆ 𝐵 )