Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
3 |
|
fldgenval.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
4 |
1 2 3
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
5 |
|
sseq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵 ) ) |
6 |
1
|
sdrgid |
⊢ ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
8 |
5 7 3
|
elrabd |
⊢ ( 𝜑 → 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
9 |
|
intss1 |
⊢ ( 𝐵 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ⊆ 𝐵 ) |
11 |
4 10
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) ⊆ 𝐵 ) |