Metamath Proof Explorer


Theorem fldgenval

Description: Value of the field generating function: ( F fldGen S ) is the smallest sub-division-ring of F containing S . (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
fldgenval.3 ( 𝜑𝑆𝐵 )
Assertion fldgenval ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )

Proof

Step Hyp Ref Expression
1 fldgenval.1 𝐵 = ( Base ‘ 𝐹 )
2 fldgenval.2 ( 𝜑𝐹 ∈ DivRing )
3 fldgenval.3 ( 𝜑𝑆𝐵 )
4 2 elexd ( 𝜑𝐹 ∈ V )
5 1 fvexi 𝐵 ∈ V
6 5 a1i ( 𝜑𝐵 ∈ V )
7 6 3 ssexd ( 𝜑𝑆 ∈ V )
8 1 sdrgid ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
9 2 8 syl ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝐹 ) )
10 sseq2 ( 𝑎 = 𝐵 → ( 𝑆𝑎𝑆𝐵 ) )
11 10 adantl ( ( 𝜑𝑎 = 𝐵 ) → ( 𝑆𝑎𝑆𝐵 ) )
12 9 11 3 rspcedvd ( 𝜑 → ∃ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) 𝑆𝑎 )
13 intexrab ( ∃ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) 𝑆𝑎 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ V )
14 12 13 sylib ( 𝜑 { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ V )
15 simpl ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → 𝑓 = 𝐹 )
16 15 fveq2d ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → ( SubDRing ‘ 𝑓 ) = ( SubDRing ‘ 𝐹 ) )
17 simpr ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → 𝑠 = 𝑆 )
18 17 sseq1d ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → ( 𝑠𝑎𝑆𝑎 ) )
19 16 18 rabeqbidv ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
20 19 inteqd ( ( 𝑓 = 𝐹𝑠 = 𝑆 ) → { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
21 df-fldgen fldGen = ( 𝑓 ∈ V , 𝑠 ∈ V ↦ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠𝑎 } )
22 20 21 ovmpoga ( ( 𝐹 ∈ V ∧ 𝑆 ∈ V ∧ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } ∈ V ) → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )
23 4 7 14 22 syl3anc ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆𝑎 } )