Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
3 |
|
fldgenval.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
4 |
2
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
5 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
7 |
6 3
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
8 |
1
|
sdrgid |
⊢ ( 𝐹 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubDRing ‘ 𝐹 ) ) |
10 |
|
sseq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐵 ) → ( 𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵 ) ) |
12 |
9 11 3
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) 𝑆 ⊆ 𝑎 ) |
13 |
|
intexrab |
⊢ ( ∃ 𝑎 ∈ ( SubDRing ‘ 𝐹 ) 𝑆 ⊆ 𝑎 ↔ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ V ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ V ) |
15 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → 𝑓 = 𝐹 ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → ( SubDRing ‘ 𝑓 ) = ( SubDRing ‘ 𝐹 ) ) |
17 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
18 |
17
|
sseq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → ( 𝑠 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑎 ) ) |
19 |
16 18
|
rabeqbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠 ⊆ 𝑎 } = { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
20 |
19
|
inteqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑠 = 𝑆 ) → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠 ⊆ 𝑎 } = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
21 |
|
df-fldgen |
⊢ fldGen = ( 𝑓 ∈ V , 𝑠 ∈ V ↦ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝑓 ) ∣ 𝑠 ⊆ 𝑎 } ) |
22 |
20 21
|
ovmpoga |
⊢ ( ( 𝐹 ∈ V ∧ 𝑆 ∈ V ∧ ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ∈ V ) → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |
23 |
4 7 14 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑆 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑆 ⊆ 𝑎 } ) |