Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fldidom | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
2 | 1 | simprbi | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ CRing ) |
3 | 1 | simplbi | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
4 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
5 | 3 4 | syl | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ Domn ) |
6 | isidom | ⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) | |
7 | 2 5 6 | sylanbrc | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) |