Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof shortened by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldidom | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
| 2 | 1 | anim1ci | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) | 
| 3 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 4 | isidom | ⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) | |
| 5 | 2 3 4 | 3imtr4i | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) |