| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn1uz2 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 2 |  | 1lt4 | ⊢ 1  <  4 | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 5 |  | divfl0 | ⊢ ( ( 1  ∈  ℕ0  ∧  4  ∈  ℕ )  →  ( 1  <  4  ↔  ( ⌊ ‘ ( 1  /  4 ) )  =  0 ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 1  <  4  ↔  ( ⌊ ‘ ( 1  /  4 ) )  =  0 ) | 
						
							| 7 | 2 6 | mpbi | ⊢ ( ⌊ ‘ ( 1  /  4 ) )  =  0 | 
						
							| 8 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 9 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 10 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 11 |  | redivcl | ⊢ ( ( 1  ∈  ℝ  ∧  4  ∈  ℝ  ∧  4  ≠  0 )  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 12 | 11 | flcld | ⊢ ( ( 1  ∈  ℝ  ∧  4  ∈  ℝ  ∧  4  ≠  0 )  →  ( ⌊ ‘ ( 1  /  4 ) )  ∈  ℤ ) | 
						
							| 13 | 12 | zred | ⊢ ( ( 1  ∈  ℝ  ∧  4  ∈  ℝ  ∧  4  ≠  0 )  →  ( ⌊ ‘ ( 1  /  4 ) )  ∈  ℝ ) | 
						
							| 14 | 8 9 10 13 | mp3an | ⊢ ( ⌊ ‘ ( 1  /  4 ) )  ∈  ℝ | 
						
							| 15 | 14 | eqlei | ⊢ ( ( ⌊ ‘ ( 1  /  4 ) )  =  0  →  ( ⌊ ‘ ( 1  /  4 ) )  ≤  0 ) | 
						
							| 16 | 7 15 | mp1i | ⊢ ( 𝑁  =  1  →  ( ⌊ ‘ ( 1  /  4 ) )  ≤  0 ) | 
						
							| 17 |  | fvoveq1 | ⊢ ( 𝑁  =  1  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  =  ( ⌊ ‘ ( 1  /  4 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑁  =  1  →  ( 𝑁  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 19 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( 𝑁  −  1 )  =  0 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑁  =  1  →  ( ( 𝑁  −  1 )  /  2 )  =  ( 0  /  2 ) ) | 
						
							| 22 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 23 |  | div0 | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 0  /  2 )  =  0 ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 0  /  2 )  =  0 | 
						
							| 25 | 21 24 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( ( 𝑁  −  1 )  /  2 )  =  0 ) | 
						
							| 26 | 16 17 25 | 3brtr4d | ⊢ ( 𝑁  =  1  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 27 |  | fldiv4lem1div2uz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 28 | 26 27 | jaoi | ⊢ ( ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 29 | 1 28 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  ≤  ( ( 𝑁  −  1 )  /  2 ) ) |