Step |
Hyp |
Ref |
Expression |
1 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
2 |
|
1lt4 |
⊢ 1 < 4 |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
|
4nn |
⊢ 4 ∈ ℕ |
5 |
|
divfl0 |
⊢ ( ( 1 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 1 < 4 ↔ ( ⌊ ‘ ( 1 / 4 ) ) = 0 ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 1 < 4 ↔ ( ⌊ ‘ ( 1 / 4 ) ) = 0 ) |
7 |
2 6
|
mpbi |
⊢ ( ⌊ ‘ ( 1 / 4 ) ) = 0 |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
|
4re |
⊢ 4 ∈ ℝ |
10 |
|
4ne0 |
⊢ 4 ≠ 0 |
11 |
|
redivcl |
⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( 1 / 4 ) ∈ ℝ ) |
12 |
11
|
flcld |
⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℤ ) |
13 |
12
|
zred |
⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℝ ) |
14 |
8 9 10 13
|
mp3an |
⊢ ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℝ |
15 |
14
|
eqlei |
⊢ ( ( ⌊ ‘ ( 1 / 4 ) ) = 0 → ( ⌊ ‘ ( 1 / 4 ) ) ≤ 0 ) |
16 |
7 15
|
mp1i |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 1 / 4 ) ) ≤ 0 ) |
17 |
|
fvoveq1 |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = ( ⌊ ‘ ( 1 / 4 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) ) |
19 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = 0 ) |
21 |
20
|
oveq1d |
⊢ ( 𝑁 = 1 → ( ( 𝑁 − 1 ) / 2 ) = ( 0 / 2 ) ) |
22 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
23 |
|
div0 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 0 / 2 ) = 0 ) |
24 |
22 23
|
ax-mp |
⊢ ( 0 / 2 ) = 0 |
25 |
21 24
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ( 𝑁 − 1 ) / 2 ) = 0 ) |
26 |
16 17 25
|
3brtr4d |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
27 |
|
fldiv4lem1div2uz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
28 |
26 27
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
29 |
1 28
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |