Metamath Proof Explorer


Theorem fldivle

Description: The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion fldivle ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ≤ ( 𝐾 / 𝐿 ) )

Proof

Step Hyp Ref Expression
1 rerpdivcl ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( 𝐾 / 𝐿 ) ∈ ℝ )
2 fllelt ( ( 𝐾 / 𝐿 ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ≤ ( 𝐾 / 𝐿 ) ∧ ( 𝐾 / 𝐿 ) < ( ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) + 1 ) ) )
3 simpl ( ( ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ≤ ( 𝐾 / 𝐿 ) ∧ ( 𝐾 / 𝐿 ) < ( ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) + 1 ) ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ≤ ( 𝐾 / 𝐿 ) )
4 1 2 3 3syl ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ≤ ( 𝐾 / 𝐿 ) )