Metamath Proof Explorer


Theorem fldivnn0

Description: The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion fldivnn0 ( ( 𝐾 ∈ ℕ0𝐿 ∈ ℕ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0nndivcl ( ( 𝐾 ∈ ℕ0𝐿 ∈ ℕ ) → ( 𝐾 / 𝐿 ) ∈ ℝ )
2 nn0ge0div ( ( 𝐾 ∈ ℕ0𝐿 ∈ ℕ ) → 0 ≤ ( 𝐾 / 𝐿 ) )
3 flge0nn0 ( ( ( 𝐾 / 𝐿 ) ∈ ℝ ∧ 0 ≤ ( 𝐾 / 𝐿 ) ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℕ0 )
4 1 2 3 syl2anc ( ( 𝐾 ∈ ℕ0𝐿 ∈ ℕ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℕ0 )