Step |
Hyp |
Ref |
Expression |
1 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
2 |
|
ceilid |
⊢ ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 ) |
3 |
1 2
|
eqtr4d |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) |
4 |
|
eqeq1 |
⊢ ( ( ⌊ ‘ 𝐴 ) = 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) |
6 |
|
ceilidz |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌈ ‘ 𝐴 ) = 𝐴 ) ) |
7 |
|
eqcom |
⊢ ( ( ⌈ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) |
8 |
6 7
|
bitrdi |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) |
9 |
8
|
biimprd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
10 |
9
|
adantl |
⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
11 |
5 10
|
sylbid |
⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
12 |
11
|
ex |
⊢ ( ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
13 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
14 |
|
df-ne |
⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ↔ ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
15 |
|
necom |
⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ↔ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) |
16 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
17 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
18 |
16 17
|
ltlend |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) ) ) |
19 |
|
breq1 |
⊢ ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) |
21 |
|
ceilge |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ⌈ ‘ 𝐴 ) ) |
22 |
|
ceilcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ ) |
23 |
22
|
zred |
⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℝ ) |
24 |
17 23
|
lenltd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( ⌈ ‘ 𝐴 ) ↔ ¬ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) |
25 |
|
pm2.21 |
⊢ ( ¬ ( ⌈ ‘ 𝐴 ) < 𝐴 → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
26 |
24 25
|
syl6bi |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( ⌈ ‘ 𝐴 ) → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) ) |
27 |
21 26
|
mpd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
29 |
20 28
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
30 |
29
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) ) |
31 |
30
|
com23 |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
32 |
18 31
|
sylbird |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
33 |
32
|
expd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( 𝐴 ≠ ( ⌊ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
34 |
33
|
com3r |
⊢ ( 𝐴 ≠ ( ⌊ ‘ 𝐴 ) → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
35 |
15 34
|
sylbi |
⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
36 |
14 35
|
sylbir |
⊢ ( ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
37 |
13 36
|
mpdi |
⊢ ( ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
38 |
12 37
|
pm2.61i |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
39 |
3 38
|
impbid2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) ) |