Metamath Proof Explorer
		
		
		
		Description:  A limit point of a function is in the topological space.  (Contributed by Jeff Hankins, 10-Nov-2009)  (Revised by Stefan O'Rear, 7-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | flfelbas | ⊢  ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) )  →  𝐴  ∈  𝑋 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isflf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) ) | 
						
							| 2 | 1 | simprbda | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) )  →  𝐴  ∈  𝑋 ) |