Step |
Hyp |
Ref |
Expression |
1 |
|
flffbas.l |
⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) |
2 |
|
fgcl |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) |
3 |
1 2
|
eqeltrid |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
4 |
|
isflf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ) ) |
5 |
3 4
|
syl3an2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ) ) |
6 |
1
|
eleq2i |
⊢ ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ) |
7 |
|
elfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) |
9 |
|
sstr2 |
⊢ ( ( 𝐹 “ 𝑠 ) ⊆ ( 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
10 |
|
imass2 |
⊢ ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ ( 𝐹 “ 𝑡 ) ) |
11 |
9 10
|
syl11 |
⊢ ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) → ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
13 |
12
|
reximdv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
15 |
14
|
com23 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
16 |
15
|
adantld |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
17 |
8 16
|
sylbid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
19 |
6 18
|
syl5bi |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑡 ∈ 𝐿 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
20 |
19
|
rexlimdv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
21 |
|
ssfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
22 |
21 1
|
sseqtrrdi |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝐿 ) |
23 |
22
|
sselda |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ 𝐿 ) |
24 |
23
|
3ad2antl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ 𝐿 ) |
25 |
24
|
ad2ant2r |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → 𝑠 ∈ 𝐿 ) |
26 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) |
27 |
|
imaeq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑠 ) ) |
28 |
27
|
sseq1d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ↔ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
29 |
28
|
rspcev |
⊢ ( ( 𝑠 ∈ 𝐿 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) |
30 |
25 26 29
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) |
31 |
30
|
rexlimdvaa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) |
32 |
20 31
|
impbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
33 |
32
|
imbi2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
34 |
33
|
ralbidv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
35 |
34
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
36 |
5 35
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |