| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flffbas.l | ⊢ 𝐿  =  ( 𝑌 filGen 𝐵 ) | 
						
							| 2 |  | fgcl | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝐵 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 3 | 1 2 | eqeltrid | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐿  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 4 |  | isflf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) ) ) ) | 
						
							| 5 | 3 4 | syl3an2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) ) ) ) | 
						
							| 6 | 1 | eleq2i | ⊢ ( 𝑡  ∈  𝐿  ↔  𝑡  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 7 |  | elfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑡  ∈  ( 𝑌 filGen 𝐵 )  ↔  ( 𝑡  ⊆  𝑌  ∧  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡 ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( 𝑌 filGen 𝐵 )  ↔  ( 𝑡  ⊆  𝑌  ∧  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡 ) ) ) | 
						
							| 9 |  | sstr2 | ⊢ ( ( 𝐹  “  𝑠 )  ⊆  ( 𝐹  “  𝑡 )  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 10 |  | imass2 | ⊢ ( 𝑠  ⊆  𝑡  →  ( 𝐹  “  𝑠 )  ⊆  ( 𝐹  “  𝑡 ) ) | 
						
							| 11 | 9 10 | syl11 | ⊢ ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ( 𝑠  ⊆  𝑡  →  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝐹  “  𝑡 )  ⊆  𝑜 )  →  ( 𝑠  ⊆  𝑡  →  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 13 | 12 | reximdv | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝐹  “  𝑡 )  ⊆  𝑜 )  →  ( ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ( ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 16 | 15 | adantld | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑡  ⊆  𝑌  ∧  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑡 )  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 17 | 8 16 | sylbid | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( 𝑌 filGen 𝐵 )  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝑡  ∈  ( 𝑌 filGen 𝐵 )  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 19 | 6 18 | biimtrid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝑡  ∈  𝐿  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 20 | 19 | rexlimdv | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 21 |  | ssfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ⊆  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 22 | 21 1 | sseqtrrdi | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ⊆  𝐿 ) | 
						
							| 23 | 22 | sselda | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑠  ∈  𝐵 )  →  𝑠  ∈  𝐿 ) | 
						
							| 24 | 23 | 3ad2antl2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑠  ∈  𝐵 )  →  𝑠  ∈  𝐿 ) | 
						
							| 25 | 24 | ad2ant2r | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑠  ∈  𝐵  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) )  →  𝑠  ∈  𝐿 ) | 
						
							| 26 |  | simprr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑠  ∈  𝐵  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) )  →  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) | 
						
							| 27 |  | imaeq2 | ⊢ ( 𝑡  =  𝑠  →  ( 𝐹  “  𝑡 )  =  ( 𝐹  “  𝑠 ) ) | 
						
							| 28 | 27 | sseq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( 𝐹  “  𝑡 )  ⊆  𝑜  ↔  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 29 | 28 | rspcev | ⊢ ( ( 𝑠  ∈  𝐿  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑜 )  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) | 
						
							| 30 | 25 26 29 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑠  ∈  𝐵  ∧  ( 𝐹  “  𝑠 )  ⊆  𝑜 ) )  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) | 
						
							| 31 | 30 | rexlimdvaa | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) ) | 
						
							| 32 | 20 31 | impbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜  ↔  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴  ∈  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 )  ↔  ( 𝐴  ∈  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 )  ↔  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) | 
						
							| 35 | 34 | pm5.32da | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑡  ∈  𝐿 ( 𝐹  “  𝑡 )  ⊆  𝑜 ) )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) ) | 
						
							| 36 | 5 35 | bitrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  ∃ 𝑠  ∈  𝐵 ( 𝐹  “  𝑠 )  ⊆  𝑜 ) ) ) ) |