| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flfneii.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | flfnei | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛 ) ) ) | 
						
							| 4 | 2 3 | syl3an1b | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛 ) ) ) | 
						
							| 5 | 4 | simplbda | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) )  →  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛 ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛 ) | 
						
							| 7 |  | sseq2 | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑛  ↔  ( 𝐹  “  𝑠 )  ⊆  𝑁 ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛  ↔  ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑁 ) ) | 
						
							| 9 | 8 | rspcv | ⊢ ( 𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛  →  ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑁 ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑛  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑛  →  ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑁 ) ) | 
						
							| 11 | 6 10 | mpd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝐴  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ∧  𝑁  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ∃ 𝑠  ∈  𝐿 ( 𝐹  “  𝑠 )  ⊆  𝑁 ) |