Step |
Hyp |
Ref |
Expression |
1 |
|
flimfcls |
⊢ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ⊆ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ⊆ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
3 |
|
flfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
4 |
|
fcfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
5 |
2 3 4
|
3sstr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ⊆ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) |