Step |
Hyp |
Ref |
Expression |
1 |
|
flftg.l |
⊢ 𝐽 = ( topGen ‘ 𝐵 ) |
2 |
|
isflf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
3 |
1
|
raleqi |
⊢ ( ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
5 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
7 |
1 6
|
eqeltrrid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
8 |
|
tgclb |
⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
9 |
7 8
|
sylibr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐵 ∈ TopBases ) |
10 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
11 |
|
eleq2w |
⊢ ( 𝑢 = 𝑜 → ( 𝐴 ∈ 𝑢 ↔ 𝐴 ∈ 𝑜 ) ) |
12 |
|
sseq2 |
⊢ ( 𝑢 = 𝑜 → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ↔ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑢 = 𝑜 → ( ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑢 = 𝑜 → ( ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
15 |
14
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
16 |
|
ssralv |
⊢ ( 𝐵 ⊆ ( topGen ‘ 𝐵 ) → ( ∀ 𝑜 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
17 |
15 16
|
syl5bi |
⊢ ( 𝐵 ⊆ ( topGen ‘ 𝐵 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
18 |
9 10 17
|
3syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
19 |
|
tg2 |
⊢ ( ( 𝑢 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) |
20 |
|
r19.29 |
⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑜 ∈ 𝐵 ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) ) |
21 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → 𝐴 ∈ 𝑜 ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → 𝑜 ⊆ 𝑢 ) |
23 |
|
sstr2 |
⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ( 𝑜 ⊆ 𝑢 → ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
24 |
22 23
|
syl5com |
⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
25 |
24
|
reximdv |
⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
26 |
21 25
|
embantd |
⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
27 |
26
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
28 |
27
|
rexlimivw |
⊢ ( ∃ 𝑜 ∈ 𝐵 ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
29 |
20 28
|
syl |
⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
30 |
29
|
ex |
⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ( ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
31 |
19 30
|
syl5 |
⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ( ( 𝑢 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
32 |
31
|
expdimp |
⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ 𝑢 ∈ ( topGen ‘ 𝐵 ) ) → ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
34 |
18 33
|
impbid1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
35 |
3 34
|
syl5bb |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
36 |
35
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
37 |
2 36
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |