Step |
Hyp |
Ref |
Expression |
1 |
|
flltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
3 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
4 |
3
|
zred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
6 |
5
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
7 |
6
|
peano2zd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
9 |
|
lelttr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
10 |
4 5 8 9
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
11 |
2 10
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
12 |
|
zleltp1 |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
13 |
3 6 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
14 |
11 13
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
15 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
17 |
6
|
zred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
18 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
19 |
4 17 5 18
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
20 |
16 19
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
21 |
14 20
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |