Metamath Proof Explorer


Theorem flidz

Description: A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion flidz ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )

Proof

Step Hyp Ref Expression
1 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
2 eleq1 ( ( ⌊ ‘ 𝐴 ) = 𝐴 → ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) )
3 1 2 syl5ibcom ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )
4 flid ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 )
5 3 4 impbid1 ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )