Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
flift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) |
3 |
|
flift.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
4 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) |
5 |
4 3 2
|
fliftrel |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ⊆ ( 𝑆 × 𝑅 ) ) |
6 |
|
relxp |
⊢ Rel ( 𝑆 × 𝑅 ) |
7 |
|
relss |
⊢ ( ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ⊆ ( 𝑆 × 𝑅 ) → ( Rel ( 𝑆 × 𝑅 ) → Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) |
8 |
5 6 7
|
mpisyl |
⊢ ( 𝜑 → Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
9 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
10 |
8 9
|
jctil |
⊢ ( 𝜑 → ( Rel ◡ 𝐹 ∧ Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) |
11 |
1 2 3
|
fliftel |
⊢ ( 𝜑 → ( 𝑧 𝐹 𝑦 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
12 |
|
vex |
⊢ 𝑦 ∈ V |
13 |
|
vex |
⊢ 𝑧 ∈ V |
14 |
12 13
|
brcnv |
⊢ ( 𝑦 ◡ 𝐹 𝑧 ↔ 𝑧 𝐹 𝑦 ) |
15 |
|
ancom |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
16 |
15
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
17 |
11 14 16
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑦 ◡ 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ) ) |
18 |
4 3 2
|
fliftel |
⊢ ( 𝜑 → ( 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ) ) |
19 |
17 18
|
bitr4d |
⊢ ( 𝜑 → ( 𝑦 ◡ 𝐹 𝑧 ↔ 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ) ) |
20 |
|
df-br |
⊢ ( 𝑦 ◡ 𝐹 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ◡ 𝐹 ) |
21 |
|
df-br |
⊢ ( 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
22 |
19 20 21
|
3bitr3g |
⊢ ( 𝜑 → ( 〈 𝑦 , 𝑧 〉 ∈ ◡ 𝐹 ↔ 〈 𝑦 , 𝑧 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) |
23 |
22
|
eqrelrdv2 |
⊢ ( ( ( Rel ◡ 𝐹 ∧ Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ∧ 𝜑 ) → ◡ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
24 |
10 23
|
mpancom |
⊢ ( 𝜑 → ◡ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |