Metamath Proof Explorer


Theorem fliftel

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
Assertion fliftel ( 𝜑 → ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥𝑋 ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
2 flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
3 flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
4 df-br ( 𝐶 𝐹 𝐷 ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 )
5 1 eleq2i ( ⟨ 𝐶 , 𝐷 ⟩ ∈ 𝐹 ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) )
6 eqid ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) = ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
7 opex 𝐴 , 𝐵 ⟩ ∈ V
8 6 7 elrnmpti ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ∃ 𝑥𝑋𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
9 4 5 8 3bitri ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥𝑋𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
10 opthg2 ( ( 𝐴𝑅𝐵𝑆 ) → ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )
11 2 3 10 syl2anc ( ( 𝜑𝑥𝑋 ) → ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )
12 11 rexbidva ( 𝜑 → ( ∃ 𝑥𝑋𝐶 , 𝐷 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑥𝑋 ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )
13 9 12 bitrid ( 𝜑 → ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥𝑋 ( 𝐶 = 𝐴𝐷 = 𝐵 ) ) )