Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
flift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) |
3 |
|
flift.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → Fun 𝐹 ) |
5 |
1 2 3
|
fliftel |
⊢ ( 𝜑 → ( 𝑦 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
8 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) |
9 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) ) |
10 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑆 → ∃ 𝑧 𝑧 = 𝐵 ) |
11 |
3 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 𝑧 = 𝐵 ) |
12 |
11
|
biantrud |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 = 𝐴 ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) ) ) |
13 |
9 12
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ 𝑦 = 𝐴 ) ) |
14 |
13
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
16 |
8 15
|
bitr3id |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
17 |
7 16
|
bitrd |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
18 |
17
|
abbidv |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → { 𝑦 ∣ ∃ 𝑧 𝑦 𝐹 𝑧 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 } ) |
19 |
|
df-dm |
⊢ dom 𝐹 = { 𝑦 ∣ ∃ 𝑧 𝑦 𝐹 𝑧 } |
20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
21 |
20
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 } |
22 |
18 19 21
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → dom 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
23 |
|
df-fn |
⊢ ( 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↔ ( Fun 𝐹 ∧ dom 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
24 |
4 22 23
|
sylanbrc |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
25 |
1 2 3
|
fliftrel |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |
27 |
|
rnss |
⊢ ( 𝐹 ⊆ ( 𝑅 × 𝑆 ) → ran 𝐹 ⊆ ran ( 𝑅 × 𝑆 ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ran 𝐹 ⊆ ran ( 𝑅 × 𝑆 ) ) |
29 |
|
rnxpss |
⊢ ran ( 𝑅 × 𝑆 ) ⊆ 𝑆 |
30 |
28 29
|
sstrdi |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ran 𝐹 ⊆ 𝑆 ) |
31 |
|
df-f |
⊢ ( 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ↔ ( 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ ran 𝐹 ⊆ 𝑆 ) ) |
32 |
24 30 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( Fun 𝐹 → 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) ) |
34 |
|
ffun |
⊢ ( 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 → Fun 𝐹 ) |
35 |
33 34
|
impbid1 |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) ) |