Metamath Proof Explorer


Theorem fliftfuns

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
Assertion fliftfuns ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦𝑋𝑧𝑋 ( 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 𝑦 / 𝑥 𝐵 = 𝑧 / 𝑥 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
2 flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
3 flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
4 nfcv 𝑦𝐴 , 𝐵
5 nfcsb1v 𝑥 𝑦 / 𝑥 𝐴
6 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
7 5 6 nfop 𝑥 𝑦 / 𝑥 𝐴 , 𝑦 / 𝑥 𝐵
8 csbeq1a ( 𝑥 = 𝑦𝐴 = 𝑦 / 𝑥 𝐴 )
9 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
10 8 9 opeq12d ( 𝑥 = 𝑦 → ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑦 / 𝑥 𝐴 , 𝑦 / 𝑥 𝐵 ⟩ )
11 4 7 10 cbvmpt ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) = ( 𝑦𝑋 ↦ ⟨ 𝑦 / 𝑥 𝐴 , 𝑦 / 𝑥 𝐵 ⟩ )
12 11 rneqi ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) = ran ( 𝑦𝑋 ↦ ⟨ 𝑦 / 𝑥 𝐴 , 𝑦 / 𝑥 𝐵 ⟩ )
13 1 12 eqtri 𝐹 = ran ( 𝑦𝑋 ↦ ⟨ 𝑦 / 𝑥 𝐴 , 𝑦 / 𝑥 𝐵 ⟩ )
14 2 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐴𝑅 )
15 5 nfel1 𝑥 𝑦 / 𝑥 𝐴𝑅
16 8 eleq1d ( 𝑥 = 𝑦 → ( 𝐴𝑅 𝑦 / 𝑥 𝐴𝑅 ) )
17 15 16 rspc ( 𝑦𝑋 → ( ∀ 𝑥𝑋 𝐴𝑅 𝑦 / 𝑥 𝐴𝑅 ) )
18 14 17 mpan9 ( ( 𝜑𝑦𝑋 ) → 𝑦 / 𝑥 𝐴𝑅 )
19 3 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐵𝑆 )
20 6 nfel1 𝑥 𝑦 / 𝑥 𝐵𝑆
21 9 eleq1d ( 𝑥 = 𝑦 → ( 𝐵𝑆 𝑦 / 𝑥 𝐵𝑆 ) )
22 20 21 rspc ( 𝑦𝑋 → ( ∀ 𝑥𝑋 𝐵𝑆 𝑦 / 𝑥 𝐵𝑆 ) )
23 19 22 mpan9 ( ( 𝜑𝑦𝑋 ) → 𝑦 / 𝑥 𝐵𝑆 )
24 csbeq1 ( 𝑦 = 𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )
25 csbeq1 ( 𝑦 = 𝑧 𝑦 / 𝑥 𝐵 = 𝑧 / 𝑥 𝐵 )
26 13 18 23 24 25 fliftfun ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦𝑋𝑧𝑋 ( 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 𝑦 / 𝑥 𝐵 = 𝑧 / 𝑥 𝐵 ) ) )