Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
flift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) |
3 |
|
flift.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 𝐴 , 𝐵 〉 |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
7 |
5 6
|
nfop |
⊢ Ⅎ 𝑥 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 |
8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
10 |
8 9
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 𝐴 , 𝐵 〉 = 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
11 |
4 7 10
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
12 |
11
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
13 |
1 12
|
eqtri |
⊢ 𝐹 = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
14 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 ) |
15 |
5
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 |
16 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑅 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
17 |
15 16
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
18 |
14 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) |
19 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 ) |
20 |
6
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 |
21 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
22 |
20 21
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
23 |
19 22
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) |
24 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
25 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
26 |
13 18 23 24 25
|
fliftfun |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |