Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftrel | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | 2 3 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) |
| 5 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑋 ⟶ ( 𝑅 × 𝑆 ) ) |
| 6 | 5 | frnd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ⊆ ( 𝑅 × 𝑆 ) ) |
| 7 | 1 6 | eqsstrid | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |