Metamath Proof Explorer


Theorem fliftrel

Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
Assertion fliftrel ( 𝜑𝐹 ⊆ ( 𝑅 × 𝑆 ) )

Proof

Step Hyp Ref Expression
1 flift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ )
2 flift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑅 )
3 flift.3 ( ( 𝜑𝑥𝑋 ) → 𝐵𝑆 )
4 2 3 opelxpd ( ( 𝜑𝑥𝑋 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) )
5 4 fmpttd ( 𝜑 → ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) : 𝑋 ⟶ ( 𝑅 × 𝑆 ) )
6 5 frnd ( 𝜑 → ran ( 𝑥𝑋 ↦ ⟨ 𝐴 , 𝐵 ⟩ ) ⊆ ( 𝑅 × 𝑆 ) )
7 1 6 eqsstrid ( 𝜑𝐹 ⊆ ( 𝑅 × 𝑆 ) )