Metamath Proof Explorer


Theorem flimcfil

Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis lmcau.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion flimcfil ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 lmcau.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 eqid 𝐽 = 𝐽
3 2 flimfil ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
4 3 adantl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
5 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
6 5 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑋 = 𝐽 )
7 6 fveq2d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ 𝐽 ) )
8 4 7 eleqtrrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
9 2 flimelbas ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 𝐽 )
10 9 ad2antlr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 𝐽 )
11 5 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑋 = 𝐽 )
12 10 11 eleqtrrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴𝑋 )
13 simplr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) )
14 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
15 14 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐽 ∈ Top )
16 simpll ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
17 rpxr ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ* )
18 17 adantl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ* )
19 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝑥 ∈ ℝ* ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 )
20 16 12 18 19 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 )
21 simpr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ )
22 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) )
23 16 12 21 22 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) )
24 opnneip ( ( 𝐽 ∈ Top ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
25 15 20 23 24 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
26 flimnei ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 )
27 13 25 26 syl2anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 )
28 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) )
29 28 eleq1d ( 𝑦 = 𝐴 → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ↔ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) )
30 29 rspcev ( ( 𝐴𝑋 ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) → ∃ 𝑦𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 )
31 12 27 30 syl2anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 )
32 31 ralrimiva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑥 ∈ ℝ+𝑦𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 )
33 iscfil3 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) )
34 33 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) )
35 8 32 34 mpbir2and ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) )