Metamath Proof Explorer


Theorem flimclsi

Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion flimclsi ( 𝑆𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 flimfil ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
3 2 ad2antlr ( ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
4 flimnei ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦𝐹 )
5 4 adantll ( ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦𝐹 )
6 simpll ( ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑆𝐹 )
7 filinn0 ( ( 𝐹 ∈ ( Fil ‘ 𝐽 ) ∧ 𝑦𝐹𝑆𝐹 ) → ( 𝑦𝑆 ) ≠ ∅ )
8 3 5 6 7 syl3anc ( ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ( 𝑦𝑆 ) ≠ ∅ )
9 8 ralrimiva ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦𝑆 ) ≠ ∅ )
10 flimtop ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top )
11 10 adantl ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐽 ∈ Top )
12 filelss ( ( 𝐹 ∈ ( Fil ‘ 𝐽 ) ∧ 𝑆𝐹 ) → 𝑆 𝐽 )
13 12 ancoms ( ( 𝑆𝐹𝐹 ∈ ( Fil ‘ 𝐽 ) ) → 𝑆 𝐽 )
14 2 13 sylan2 ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑆 𝐽 )
15 1 flimelbas ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 𝐽 )
16 15 adantl ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 𝐽 )
17 1 neindisj2 ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽𝑥 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦𝑆 ) ≠ ∅ ) )
18 11 14 16 17 syl3anc ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦𝑆 ) ≠ ∅ ) )
19 9 18 mpbird ( ( 𝑆𝐹𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
20 19 ex ( 𝑆𝐹 → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
21 20 ssrdv ( 𝑆𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )