Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
1
|
flimfil |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
4 |
|
flimnei |
⊢ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) |
5 |
4
|
adantll |
⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) |
6 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑆 ∈ 𝐹 ) |
7 |
|
filinn0 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
8 |
3 5 6 7
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
10 |
|
flimtop |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
11 |
10
|
adantl |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐽 ∈ Top ) |
12 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝑆 ∈ 𝐹 ) → 𝑆 ⊆ ∪ 𝐽 ) |
13 |
12
|
ancoms |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
14 |
2 13
|
sylan2 |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
15 |
1
|
flimelbas |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ∪ 𝐽 ) |
16 |
15
|
adantl |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
17 |
1
|
neindisj2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
18 |
11 14 16 17
|
syl3anc |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
19 |
9 18
|
mpbird |
⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
20 |
19
|
ex |
⊢ ( 𝑆 ∈ 𝐹 → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( 𝑆 ∈ 𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |