| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimtop | ⊢ ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 3 | 2 | flimfil | ⊢ ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 4 |  | flimclsi | ⊢ ( 𝑥  ∈  𝐹  →  ( 𝐽  fLim  𝐹 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) | 
						
							| 5 | 4 | sseld | ⊢ ( 𝑥  ∈  𝐹  →  ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  𝑎  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | com12 | ⊢ ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  ( 𝑥  ∈  𝐹  →  𝑎  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) | 
						
							| 7 | 6 | ralrimiv | ⊢ ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  ∀ 𝑥  ∈  𝐹 𝑎  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) | 
						
							| 8 | 2 | isfcls | ⊢ ( 𝑎  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 )  ∧  ∀ 𝑥  ∈  𝐹 𝑎  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) | 
						
							| 9 | 1 3 7 8 | syl3anbrc | ⊢ ( 𝑎  ∈  ( 𝐽  fLim  𝐹 )  →  𝑎  ∈  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 10 | 9 | ssriv | ⊢ ( 𝐽  fLim  𝐹 )  ⊆  ( 𝐽  fClus  𝐹 ) |