Metamath Proof Explorer


Theorem flimfil

Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimuni.1 𝑋 = 𝐽
Assertion flimfil ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 flimuni.1 𝑋 = 𝐽
2 1 elflim2 ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
3 2 simplbi ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) )
4 3 simp2d ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ran Fil )
5 filunirn ( 𝐹 ran Fil ↔ 𝐹 ∈ ( Fil ‘ 𝐹 ) )
6 4 5 sylib ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
7 3 simp3d ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 )
8 sspwuni ( 𝐹 ⊆ 𝒫 𝑋 𝐹𝑋 )
9 7 8 sylib ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹𝑋 )
10 flimneiss ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 )
11 flimtop ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top )
12 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
13 11 12 syl ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋𝐽 )
14 1 flimelbas ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴𝑋 )
15 opnneip ( ( 𝐽 ∈ Top ∧ 𝑋𝐽𝐴𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
16 11 13 14 15 syl3anc ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
17 10 16 sseldd ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋𝐹 )
18 elssuni ( 𝑋𝐹𝑋 𝐹 )
19 17 18 syl ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 𝐹 )
20 9 19 eqssd ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 = 𝑋 )
21 20 fveq2d ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( Fil ‘ 𝐹 ) = ( Fil ‘ 𝑋 ) )
22 6 21 eleqtrd ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )