Step |
Hyp |
Ref |
Expression |
1 |
|
flimuni.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
elflim2 |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) |
4 |
3
|
simp2d |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ∪ ran Fil ) |
5 |
|
filunirn |
⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
7 |
3
|
simp3d |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
8 |
|
sspwuni |
⊢ ( 𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋 ) |
9 |
7 8
|
sylib |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 ⊆ 𝑋 ) |
10 |
|
flimneiss |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) |
11 |
|
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
12 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ 𝐽 ) |
14 |
1
|
flimelbas |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ 𝑋 ) |
15 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
16 |
11 13 14 15
|
syl3anc |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
17 |
10 16
|
sseldd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ 𝐹 ) |
18 |
|
elssuni |
⊢ ( 𝑋 ∈ 𝐹 → 𝑋 ⊆ ∪ 𝐹 ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ⊆ ∪ 𝐹 ) |
20 |
9 19
|
eqssd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 = 𝑋 ) |
21 |
20
|
fveq2d |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( Fil ‘ ∪ 𝐹 ) = ( Fil ‘ 𝑋 ) ) |
22 |
6 21
|
eleqtrd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |