| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimfnfcls.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | flimfcls | ⊢ ( 𝐽  fLim  𝑔 )  ⊆  ( 𝐽  fClus  𝑔 ) | 
						
							| 3 |  | flimtop | ⊢ ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝑔  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝐹  ⊆  𝑔 ) | 
						
							| 9 |  | flimss2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑔 )  →  ( 𝐽  fLim  𝐹 )  ⊆  ( 𝐽  fLim  𝑔 ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  ( 𝐽  fLim  𝐹 )  ⊆  ( 𝐽  fLim  𝑔 ) ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝐴  ∈  ( 𝐽  fLim  𝐹 ) ) | 
						
							| 12 | 10 11 | sseldd | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝐴  ∈  ( 𝐽  fLim  𝑔 ) ) | 
						
							| 13 | 2 12 | sselid | ⊢ ( ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐹  ⊆  𝑔 )  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ∧  𝑔  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  →  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) | 
						
							| 16 |  | sseq2 | ⊢ ( 𝑔  =  𝐹  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  𝐹 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑔  =  𝐹  →  ( 𝐽  fClus  𝑔 )  =  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( 𝑔  =  𝐹  →  ( 𝐴  ∈  ( 𝐽  fClus  𝑔 )  ↔  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑔  =  𝐹  →  ( ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  ↔  ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) ) | 
						
							| 20 | 19 | rspcv | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) ) | 
						
							| 21 |  | ssid | ⊢ 𝐹  ⊆  𝐹 | 
						
							| 22 |  | id | ⊢ ( ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) ) | 
						
							| 23 | 21 22 | mpi | ⊢ ( ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) ) | 
						
							| 24 |  | fclstop | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐽  ∈  Top ) | 
						
							| 25 | 1 | fclselbas | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  𝐴  ∈  𝑋 ) | 
						
							| 26 | 24 25 | jca | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  →  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 27 | 23 26 | syl | ⊢ ( ( 𝐹  ⊆  𝐹  →  𝐴  ∈  ( 𝐽  fClus  𝐹 ) )  →  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 28 | 20 27 | syl6 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 29 |  | disjdif | ⊢ ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  =  ∅ | 
						
							| 30 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 31 |  | simplrl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 32 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 34 |  | pwexg | ⊢ ( 𝑋  ∈  𝐽  →  𝒫  𝑋  ∈  V ) | 
						
							| 35 |  | rabexg | ⊢ ( 𝒫  𝑋  ∈  V  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  V ) | 
						
							| 36 | 33 34 35 | 3syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  V ) | 
						
							| 37 |  | unexg | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  V )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ∈  V ) | 
						
							| 38 | 30 36 37 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ∈  V ) | 
						
							| 39 |  | ssfii | ⊢ ( ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ∈  V  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) | 
						
							| 41 |  | filsspw | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 42 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ⊆  𝒫  𝑋 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ⊆  𝒫  𝑋 ) | 
						
							| 44 | 41 43 | unssd | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  𝒫  𝑋 ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  𝒫  𝑋 ) | 
						
							| 46 |  | ssun2 | ⊢ { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ⊆  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) | 
						
							| 47 |  | sseq2 | ⊢ ( 𝑥  =  ( 𝑋  ∖  𝑜 )  →  ( ( 𝑋  ∖  𝑜 )  ⊆  𝑥  ↔  ( 𝑋  ∖  𝑜 )  ⊆  ( 𝑋  ∖  𝑜 ) ) ) | 
						
							| 48 |  | difss | ⊢ ( 𝑋  ∖  𝑜 )  ⊆  𝑋 | 
						
							| 49 |  | elpw2g | ⊢ ( 𝑋  ∈  𝐽  →  ( ( 𝑋  ∖  𝑜 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑜 )  ⊆  𝑋 ) ) | 
						
							| 50 | 33 49 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ( 𝑋  ∖  𝑜 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑜 )  ⊆  𝑋 ) ) | 
						
							| 51 | 48 50 | mpbiri | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ∈  𝒫  𝑋 ) | 
						
							| 52 |  | ssid | ⊢ ( 𝑋  ∖  𝑜 )  ⊆  ( 𝑋  ∖  𝑜 ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ⊆  ( 𝑋  ∖  𝑜 ) ) | 
						
							| 54 | 47 51 53 | elrabd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) | 
						
							| 55 | 46 54 | sselid | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ∈  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) | 
						
							| 56 | 55 | ne0d | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ≠  ∅ ) | 
						
							| 57 |  | sseq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑋  ∖  𝑜 )  ⊆  𝑥  ↔  ( 𝑋  ∖  𝑜 )  ⊆  𝑧 ) ) | 
						
							| 58 | 57 | elrab | ⊢ ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ↔  ( 𝑧  ∈  𝒫  𝑋  ∧  ( 𝑋  ∖  𝑜 )  ⊆  𝑧 ) ) | 
						
							| 59 | 58 | simprbi | ⊢ ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  →  ( 𝑋  ∖  𝑜 )  ⊆  𝑧 ) | 
						
							| 60 | 59 | ad2antll | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑋  ∖  𝑜 )  ⊆  𝑧 ) | 
						
							| 61 |  | sslin | ⊢ ( ( 𝑋  ∖  𝑜 )  ⊆  𝑧  →  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ⊆  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ⊆  ( 𝑦  ∩  𝑧 ) ) | 
						
							| 63 |  | simprrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ¬  𝑜  ∈  𝐹 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ¬  𝑜  ∈  𝐹 ) | 
						
							| 65 |  | inssdif0 | ⊢ ( ( 𝑦  ∩  𝑋 )  ⊆  𝑜  ↔  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  =  ∅ ) | 
						
							| 66 |  | simplll | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 67 |  | simprl | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 68 |  | filelss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 69 | 66 67 68 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 70 |  | dfss2 | ⊢ ( 𝑦  ⊆  𝑋  ↔  ( 𝑦  ∩  𝑋 )  =  𝑦 ) | 
						
							| 71 | 69 70 | sylib | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑦  ∩  𝑋 )  =  𝑦 ) | 
						
							| 72 | 71 | sseq1d | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( ( 𝑦  ∩  𝑋 )  ⊆  𝑜  ↔  𝑦  ⊆  𝑜 ) ) | 
						
							| 73 | 30 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∧  𝑦  ⊆  𝑜 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 74 |  | simplrl | ⊢ ( ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∧  𝑦  ⊆  𝑜 )  →  𝑦  ∈  𝐹 ) | 
						
							| 75 |  | elssuni | ⊢ ( 𝑜  ∈  𝐽  →  𝑜  ⊆  ∪  𝐽 ) | 
						
							| 76 | 75 1 | sseqtrrdi | ⊢ ( 𝑜  ∈  𝐽  →  𝑜  ⊆  𝑋 ) | 
						
							| 77 | 76 | ad2antrl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝑜  ⊆  𝑋 ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∧  𝑦  ⊆  𝑜 )  →  𝑜  ⊆  𝑋 ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∧  𝑦  ⊆  𝑜 )  →  𝑦  ⊆  𝑜 ) | 
						
							| 80 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑜  ⊆  𝑋  ∧  𝑦  ⊆  𝑜 ) )  →  𝑜  ∈  𝐹 ) | 
						
							| 81 | 73 74 78 79 80 | syl13anc | ⊢ ( ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∧  𝑦  ⊆  𝑜 )  →  𝑜  ∈  𝐹 ) | 
						
							| 82 | 81 | ex | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑦  ⊆  𝑜  →  𝑜  ∈  𝐹 ) ) | 
						
							| 83 | 72 82 | sylbid | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( ( 𝑦  ∩  𝑋 )  ⊆  𝑜  →  𝑜  ∈  𝐹 ) ) | 
						
							| 84 | 65 83 | biimtrrid | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  =  ∅  →  𝑜  ∈  𝐹 ) ) | 
						
							| 85 | 84 | necon3bd | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( ¬  𝑜  ∈  𝐹  →  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) ) | 
						
							| 86 | 64 85 | mpd | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) | 
						
							| 87 |  | ssn0 | ⊢ ( ( ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ⊆  ( 𝑦  ∩  𝑧 )  ∧  ( 𝑦  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ )  →  ( 𝑦  ∩  𝑧 )  ≠  ∅ ) | 
						
							| 88 | 62 86 87 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  →  ( 𝑦  ∩  𝑧 )  ≠  ∅ ) | 
						
							| 89 | 88 | ralrimivva | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ∀ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ( 𝑦  ∩  𝑧 )  ≠  ∅ ) | 
						
							| 90 |  | filfbas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 91 | 30 90 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 92 | 48 | a1i | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ⊆  𝑋 ) | 
						
							| 93 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 94 | 30 93 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝑋  ∈  𝐹 ) | 
						
							| 95 |  | eleq1 | ⊢ ( 𝑜  =  𝑋  →  ( 𝑜  ∈  𝐹  ↔  𝑋  ∈  𝐹 ) ) | 
						
							| 96 | 94 95 | syl5ibrcom | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑜  =  𝑋  →  𝑜  ∈  𝐹 ) ) | 
						
							| 97 | 96 | necon3bd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ¬  𝑜  ∈  𝐹  →  𝑜  ≠  𝑋 ) ) | 
						
							| 98 | 63 97 | mpd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝑜  ≠  𝑋 ) | 
						
							| 99 |  | pssdifn0 | ⊢ ( ( 𝑜  ⊆  𝑋  ∧  𝑜  ≠  𝑋 )  →  ( 𝑋  ∖  𝑜 )  ≠  ∅ ) | 
						
							| 100 | 77 98 99 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ≠  ∅ ) | 
						
							| 101 |  | supfil | ⊢ ( ( 𝑋  ∈  𝐽  ∧  ( 𝑋  ∖  𝑜 )  ⊆  𝑋  ∧  ( 𝑋  ∖  𝑜 )  ≠  ∅ )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 102 | 33 92 100 101 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 103 |  | filfbas | ⊢ ( { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( Fil ‘ 𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 105 |  | fbunfip | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 }  ∈  ( fBas ‘ 𝑋 ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ↔  ∀ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ( 𝑦  ∩  𝑧 )  ≠  ∅ ) ) | 
						
							| 106 | 91 104 105 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ↔  ∀ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ( 𝑦  ∩  𝑧 )  ≠  ∅ ) ) | 
						
							| 107 | 89 106 | mpbird | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) | 
						
							| 108 |  | fsubbas | ⊢ ( 𝑋  ∈  𝐹  →  ( ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) | 
						
							| 109 | 94 108 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) | 
						
							| 110 | 45 56 107 109 | mpbir3and | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 111 |  | ssfg | ⊢ ( ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 113 | 40 112 | sstrd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 114 | 113 | unssad | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 115 |  | fgcl | ⊢ ( ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 116 | 110 115 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 117 |  | sseq2 | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) | 
						
							| 118 |  | oveq2 | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  ( 𝐽  fClus  𝑔 )  =  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) | 
						
							| 119 | 118 | eleq2d | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝑔 )  ↔  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) ) | 
						
							| 120 | 117 119 | imbi12d | ⊢ ( 𝑔  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  ( ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  ↔  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) ) ) | 
						
							| 121 | 120 | rspcv | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) ) ) | 
						
							| 122 | 116 121 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) )  →  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) ) ) | 
						
							| 123 | 114 122 | mpid | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) ) | 
						
							| 124 |  | simpr | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) ) | 
						
							| 125 |  | simplrl | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  𝑜  ∈  𝐽 ) | 
						
							| 126 |  | simprrl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  𝐴  ∈  𝑜 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  𝐴  ∈  𝑜 ) | 
						
							| 128 | 113 55 | sseldd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝑋  ∖  𝑜 )  ∈  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  ( 𝑋  ∖  𝑜 )  ∈  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) | 
						
							| 130 |  | fclsopni | ⊢ ( ( 𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) )  ∧  ( 𝑜  ∈  𝐽  ∧  𝐴  ∈  𝑜  ∧  ( 𝑋  ∖  𝑜 )  ∈  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) | 
						
							| 131 | 124 125 127 129 130 | syl13anc | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  ∧  𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) ) )  →  ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) | 
						
							| 132 | 131 | ex | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑜 )  ⊆  𝑥 } ) ) ) )  →  ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) ) | 
						
							| 133 | 123 132 | syld | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  ≠  ∅ ) ) | 
						
							| 134 | 133 | necon2bd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ( ( 𝑜  ∩  ( 𝑋  ∖  𝑜 ) )  =  ∅  →  ¬  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) ) | 
						
							| 135 | 29 134 | mpi | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  ( 𝑜  ∈  𝐽  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) ) )  →  ¬  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) | 
						
							| 136 | 135 | anassrs | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  𝑜  ∈  𝐽 )  ∧  ( 𝐴  ∈  𝑜  ∧  ¬  𝑜  ∈  𝐹 ) )  →  ¬  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) | 
						
							| 137 | 136 | expr | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  𝑜  ∈  𝐽 )  ∧  𝐴  ∈  𝑜 )  →  ( ¬  𝑜  ∈  𝐹  →  ¬  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) ) | 
						
							| 138 | 137 | con4d | ⊢ ( ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  𝑜  ∈  𝐽 )  ∧  𝐴  ∈  𝑜 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝑜  ∈  𝐹 ) ) | 
						
							| 139 | 138 | ex | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  𝑜  ∈  𝐽 )  →  ( 𝐴  ∈  𝑜  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝑜  ∈  𝐹 ) ) ) | 
						
							| 140 | 139 | com23 | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  ∧  𝑜  ∈  𝐽 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐴  ∈  𝑜  →  𝑜  ∈  𝐹 ) ) ) | 
						
							| 141 | 140 | ralrimdva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝑜  ∈  𝐹 ) ) ) | 
						
							| 142 |  | simprr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 143 | 141 142 | jctild | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝑜  ∈  𝐹 ) ) ) ) | 
						
							| 144 |  | simprl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  𝐽  ∈  Top ) | 
						
							| 145 | 144 4 | sylib | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 146 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 147 |  | flimopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝑜  ∈  𝐹 ) ) ) ) | 
						
							| 148 | 145 146 147 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝑜  ∈  𝐹 ) ) ) ) | 
						
							| 149 | 143 148 | sylibrd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 ) )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝐴  ∈  ( 𝐽  fLim  𝐹 ) ) ) | 
						
							| 150 | 149 | ex | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝐴  ∈  ( 𝐽  fLim  𝐹 ) ) ) ) | 
						
							| 151 | 150 | com23 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ( 𝐽  fLim  𝐹 ) ) ) ) | 
						
							| 152 | 28 151 | mpdd | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) )  →  𝐴  ∈  ( 𝐽  fLim  𝐹 ) ) ) | 
						
							| 153 | 15 152 | impbid2 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ↔  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝐴  ∈  ( 𝐽  fClus  𝑔 ) ) ) ) |