| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elflim | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝐹 ) ) ) | 
						
							| 2 |  | dfss3 | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝐹  ↔  ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹 ) | 
						
							| 3 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 5 |  | opnneip | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝐽  ∧  𝐴  ∈  𝑥 )  →  𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑥  ∈  𝐽  ∧  𝐴  ∈  𝑥 ) )  →  𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 7 | 4 6 | sylan | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝐽  ∧  𝐴  ∈  𝑥 ) )  →  𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝐹  ↔  𝑥  ∈  𝐹 ) ) | 
						
							| 9 | 8 | rspcv | ⊢ ( 𝑥  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  →  𝑥  ∈  𝐹 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝐽  ∧  𝐴  ∈  𝑥 ) )  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  →  𝑥  ∈  𝐹 ) ) | 
						
							| 11 | 10 | expr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝐽 )  →  ( 𝐴  ∈  𝑥  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝐽 )  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  →  ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 13 | 12 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  →  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | 
						
							| 15 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐽  ∈  Top ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 17 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 18 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 19 | 16 18 | eleqtrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  ∪  𝐽 ) | 
						
							| 20 | 19 | snssd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  { 𝐴 }  ⊆  ∪  𝐽 ) | 
						
							| 21 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 22 | 21 | neii1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑦  ⊆  ∪  𝐽 ) | 
						
							| 23 | 4 22 | sylan | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑦  ⊆  ∪  𝐽 ) | 
						
							| 24 | 21 | neiint | ⊢ ( ( 𝐽  ∈  Top  ∧  { 𝐴 }  ⊆  ∪  𝐽  ∧  𝑦  ⊆  ∪  𝐽 )  →  ( 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 25 | 15 20 23 24 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 26 | 14 25 | mpbid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) | 
						
							| 27 |  | snssg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ↔  { 𝐴 }  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 29 | 26 28 | mpbird | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) | 
						
							| 30 | 21 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐽 ) | 
						
							| 31 | 15 23 30 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐽 ) | 
						
							| 32 |  | eleq2 | ⊢ ( 𝑥  =  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑥  =  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( 𝑥  ∈  𝐹  ↔  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹 ) ) | 
						
							| 34 | 32 33 | imbi12d | ⊢ ( 𝑥  =  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  ↔  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹 ) ) ) | 
						
							| 35 | 34 | rspcv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐽  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹 ) ) ) | 
						
							| 36 | 31 35 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  →  ( 𝐴  ∈  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹 ) ) ) | 
						
							| 37 | 29 36 | mpid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹 ) ) | 
						
							| 38 |  | simpllr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 39 | 21 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ⊆  ∪  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ⊆  𝑦 ) | 
						
							| 40 | 15 23 39 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ⊆  𝑦 ) | 
						
							| 41 | 23 18 | sseqtrrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 42 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹  ∧  𝑦  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ⊆  𝑦 ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 43 | 42 | 3exp2 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹  →  ( 𝑦  ⊆  𝑋  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ⊆  𝑦  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 44 | 43 | com24 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ⊆  𝑦  →  ( 𝑦  ⊆  𝑋  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹  →  𝑦  ∈  𝐹 ) ) ) ) | 
						
							| 45 | 38 40 41 44 | syl3c | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑦 )  ∈  𝐹  →  𝑦  ∈  𝐹 ) ) | 
						
							| 46 | 37 45 | syld | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  →  𝑦  ∈  𝐹 ) ) | 
						
							| 47 | 46 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 )  →  ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹 ) ) | 
						
							| 48 | 13 47 | impbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦  ∈  𝐹  ↔  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 49 | 2 48 | bitrid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝐹  ↔  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 50 | 49 | pm5.32da | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( ( 𝐴  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } )  ⊆  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) ) | 
						
							| 51 | 1 50 | bitrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝐴  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  →  𝑥  ∈  𝐹 ) ) ) ) |