| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elflim |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 2 |
|
dfss3 |
⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ) |
| 3 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 5 |
|
opnneip |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 7 |
4 6
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐹 ↔ 𝑥 ∈ 𝐹 ) ) |
| 9 |
8
|
rspcv |
⊢ ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) |
| 10 |
7 9
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) |
| 11 |
10
|
expr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → 𝑥 ∈ 𝐹 ) ) ) |
| 12 |
11
|
com23 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 13 |
12
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 → ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 15 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
| 16 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ 𝑋 ) |
| 17 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 18 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑋 = ∪ 𝐽 ) |
| 19 |
16 18
|
eleqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 20 |
19
|
snssd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 21 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 22 |
21
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 23 |
4 22
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 24 |
21
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 25 |
15 20 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 26 |
14 25
|
mpbid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 27 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 28 |
27
|
ad2antlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 29 |
26 28
|
mpbird |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 30 |
21
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 ) |
| 31 |
15 23 30
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 ) |
| 32 |
|
eleq2 |
⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 33 |
|
eleq1 |
⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( 𝑥 ∈ 𝐹 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) |
| 34 |
32 33
|
imbi12d |
⊢ ( 𝑥 = ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ↔ ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 35 |
34
|
rspcv |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐽 → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 36 |
31 35
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) ) |
| 37 |
29 36
|
mpid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ) ) |
| 38 |
|
simpllr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 39 |
21
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) |
| 40 |
15 23 39
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) |
| 41 |
23 18
|
sseqtrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑦 ⊆ 𝑋 ) |
| 42 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 43 |
42
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → ( 𝑦 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 44 |
43
|
com24 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑦 → ( 𝑦 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 45 |
38 40 41 44
|
syl3c |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑦 ) ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
| 46 |
37 45
|
syld |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → 𝑦 ∈ 𝐹 ) ) |
| 47 |
46
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ) ) |
| 48 |
13 47
|
impbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑦 ∈ 𝐹 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 49 |
2 48
|
bitrid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 50 |
49
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 51 |
1 50
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |