| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 2 | 1 | flimelbas | ⊢ ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 5 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 7 | 3 6 | eleqtrrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 8 |  | flimneiss | ⊢ ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ⊆  𝐺 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ⊆  𝐺 ) | 
						
							| 10 |  | simpl3 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝐺  ⊆  𝐹 ) | 
						
							| 11 | 9 10 | sstrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ⊆  𝐹 ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 13 |  | elflim | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝑥  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ⊆  𝐹 ) ) ) | 
						
							| 14 | 4 12 13 | syl2anc | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐹 )  ↔  ( 𝑥  ∈  𝑋  ∧  ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } )  ⊆  𝐹 ) ) ) | 
						
							| 15 | 7 11 14 | mpbir2and | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  ∧  𝑥  ∈  ( 𝐽  fLim  𝐺 ) )  →  𝑥  ∈  ( 𝐽  fLim  𝐹 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  →  𝑥  ∈  ( 𝐽  fLim  𝐹 ) ) ) | 
						
							| 17 | 16 | ssrdv | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ⊆  𝐹 )  →  ( 𝐽  fLim  𝐺 )  ⊆  ( 𝐽  fLim  𝐹 ) ) |