Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
1
|
flimelbas |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → 𝑥 ∈ ∪ 𝐽 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
5 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑋 = ∪ 𝐽 ) |
7 |
3 6
|
eleqtrrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ 𝑋 ) |
8 |
|
flimneiss |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐺 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐺 ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐺 ⊆ 𝐹 ) |
11 |
9 10
|
sstrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
13 |
|
elflim |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
14 |
4 12 13
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
15 |
7 11 14
|
mpbir2and |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
16 |
15
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
17 |
16
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐽 fLim 𝐺 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |