Metamath Proof Explorer
Description: Reverse closure for the limit point predicate. (Contributed by Mario
Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
1
|
elflim2 |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽 ) ∧ ( 𝐴 ∈ ∪ 𝐽 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽 ) ) |
4 |
3
|
simp1d |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |