Step |
Hyp |
Ref |
Expression |
1 |
|
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
2 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
3 |
2
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
6 |
5
|
flimfil |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑋 = ∪ 𝐽 → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) |
9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑋 = ∪ 𝐽 → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
10 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) → ∪ 𝐹 = ∪ 𝐽 ) |
11 |
6 10
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 = ∪ 𝐽 ) |
12 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
13 |
12
|
eqeq1d |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽 ) ) |
14 |
11 13
|
syl5ibcom |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) ) |
15 |
9 14
|
impbid |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
16 |
4 15
|
bitrd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |