Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | fllep1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
2 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
3 | peano2re | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
5 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
6 | 4 5 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
7 | 1 6 | mpd | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |