Metamath Proof Explorer


Theorem fllep1

Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion fllep1 ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) )

Proof

Step Hyp Ref Expression
1 flltp1 ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) )
2 reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
3 peano2re ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ )
4 2 3 syl ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ )
5 ltle ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
6 4 5 mpdan ( 𝐴 ∈ ℝ → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
7 1 6 mpd ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) )