Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fllep1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 2 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | peano2re | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 5 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 7 | 1 6 | mpd | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |