Step |
Hyp |
Ref |
Expression |
1 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
2 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
3 |
|
lenlt |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
6 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
lenlt |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
8 |
2 6 7
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
9 |
1 5 8
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
10 |
9
|
con4bid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |