Metamath Proof Explorer


Theorem fllt

Description: The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion fllt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ 𝐴 ) < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 flge ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵𝐴𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) )
2 zre ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ )
3 lenlt ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
4 2 3 sylan ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
5 4 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
6 reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
7 lenlt ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) )
8 2 6 7 syl2anr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) )
9 1 5 8 3bitr3d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) )
10 9 con4bid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ 𝐴 ) < 𝐵 ) )