Step |
Hyp |
Ref |
Expression |
1 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
4 |
|
fllelt |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ 𝐴 ∈ ℤ ) |
8 |
|
flidz |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ ℤ ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ ℤ ) ) |
10 |
7 9
|
mtbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
11 |
10
|
neqned |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ) |
12 |
11
|
necomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) |
13 |
2 3 6 12
|
leneltd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) < 𝐴 ) |