Metamath Proof Explorer


Theorem flodddiv4lt

Description: The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion flodddiv4lt ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℤ )
2 4z 4 ∈ ℤ
3 4ne0 4 ≠ 0
4 2 3 pm3.2i ( 4 ∈ ℤ ∧ 4 ≠ 0 )
5 4 a1i ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( 4 ∈ ℤ ∧ 4 ≠ 0 ) )
6 4dvdseven ( 4 ∥ 𝑁 → 2 ∥ 𝑁 )
7 6 con3i ( ¬ 2 ∥ 𝑁 → ¬ 4 ∥ 𝑁 )
8 7 adantl ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 4 ∥ 𝑁 )
9 fldivndvdslt ( ( 𝑁 ∈ ℤ ∧ ( 4 ∈ ℤ ∧ 4 ≠ 0 ) ∧ ¬ 4 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) )
10 1 5 8 9 syl3anc ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) )