Step |
Hyp |
Ref |
Expression |
1 |
|
modvalr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) |
2 |
1
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ) |
3 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
5 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
6 |
|
flcl |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
8 |
5 7
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
9 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
11 |
8 10
|
mulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ∈ ℂ ) |
12 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℂ ) |
14 |
4 11 13
|
subaddd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ↔ ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + ( 𝐴 mod 𝐵 ) ) = 𝐴 ) ) |
15 |
2 14
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + ( 𝐴 mod 𝐵 ) ) = 𝐴 ) |