Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝐴 ) ) |
2 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 < ( 𝑥 + 1 ) ↔ 𝐴 < ( 𝑥 + 1 ) ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ↔ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
4 |
3
|
riotabidv |
⊢ ( 𝑦 = 𝐴 → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
5 |
|
df-fl |
⊢ ⌊ = ( 𝑦 ∈ ℝ ↦ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) |
6 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |